管理发电厂需要做出许多决定,而这些决定对公司的盈利有着重大影响。决定正确时可使管理团队得到赞扬,而做出错误的决定意味着事故。目前,燃料成本急剧攀升。操作运行的任何改变,如管道发生堵塞,都会导致加热成本的显著增加。
1、管道故障
发电厂热交换器管道有许多潜在的破坏机理。铜合金中常见的破坏机理与不锈钢和高性能合金钢的破坏机理有很大区别。下面分别进行论述。
铜合金的问题
蒸汽侧侵蚀
蒸汽侧的铜合金常见的破坏机理是氨沟槽和应力腐蚀裂纹。
氨造成的沟槽——除氧添加剂,如联氨,可造成氨沟槽。氨与冷凝水相结合,沿支撑板向下流生成沟槽。
应力腐蚀裂纹(SCC)——无论是海军黄铜还是铝黄铜均对氨引起的应力腐蚀裂纹敏感。管子的残余应力高和氨会迅速形成应力腐蚀裂纹。由氨沟槽和应力腐蚀裂纹造成冷凝器的管道破坏很常见。
冷却水侧侵蚀
冲蚀—腐蚀——当水的流速大时,水会冲掉铜合金上的保护氧化层,造成冲蚀—腐蚀。对于海军黄铜和铝黄铜来说,当水的流速大于1.8米/秒时会产生这种情况。即使水的整体速度较低,但是局部区域涡流也会造成这种现象。一般产生这种冲蚀的地方是水入口端部。管道堵塞——如夹具形成的管道凸起造成的阻塞——四周形成的涡流会在几天内造成管道穿孔。
酸还原细菌(MIC腐蚀)或是使用处理过的废水。通常,当把现有的冷却水源从清水转换为处理过的废水六个月后,90-10铜镍管道会开始发生这种破坏。
一般腐蚀和铜的传递铜管上的氧化层是多孔的,可使铜离子扩散到水中。当铜溶解时,管道逐渐变薄。当水的条件为非腐蚀性时,铜的溶解很慢,使用年限为25年的铜管并不少见。然而,铜的传递仍然会对其他地方造成影响。
不锈钢
蒸汽侧
所有的不锈钢,包括商用钢种(TP304,TP316和其衍生钢种)和高性能的钢种耐包括所有联氨衍生物在内的多数锅炉用化学药品。在温度更高时,有一种机理造成早期损坏,氯化物应力腐蚀裂纹(SCC),这些损坏发生在给水加热器内。
含8%Ni的钢种(TP304)对应力腐蚀裂纹敏感,见图1所示。当发电设备从基本负载切换到循环模式时,设备发生破坏的情况更多。氯化物在干湿交替的区域,主要在过热后的冷却区域浓缩。
冷却水侧
点蚀和缝隙腐蚀—TP304和TP316对点蚀,缝隙腐蚀和与缝隙腐蚀相关的MIC敏感。如果冷却水内的氯化物含量分别超过150ppm和500ppm,不应考虑使用TP304和TP316。和铜合金一样,如果是以处理的废水作为冷却水源,也不应考虑采用TP304和TP316。
可采用价值比较分析来确定何时开始进行清理和/或更换管道。在确定何时更换管道时,应基于“寿命周期”进行。应对设备的剩余寿命时间进行分析。进行分析时要考虑的各种因素包括:
初始管道成本;
安装成本;
提高热性能后燃料的节约;
降低冷却水化学处理的成本;
由于汽轮机效率的损失,发电的减少;
降低或省去锅炉管道和高压汽轮机的清理费用;
减少事故停车/减少堵塞泄漏的管道。
|